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Validity of the scaling functional approach for polymer interfaces as a variational theory
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We discuss the soundness of the scaling functi@®g)l approach proposed by Aubouy Guiselin and Raphae
[Macromolecules29, 7261 (1996] to describe polymeric interfaces. In particular, we demonstrate that this
approach is a variational theory. We emphasize the role of SF theory as an important link between ground-state
theories suitable to describe adsorbed layers, and “classical” theories for polymer brushes.
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[. INTRODUCTION whereP is the statistical distribution of loop sizes in mono-
mer units, and, is the total numbetper cnf) of loops. The
Polymer interfaces are layers made of polymeric chains iffree energy(per cnt) of the layer of chains is written as
direct contact with a boundary which may be a solid/liquid,
liquid/liquid interface or a more complex surface such as a kgT (N
membrane. Because they have applications in such diverse F{S= —zf [k[aZS(n)]BH—aZS’(n)]
fields as colloid stabilization, coating, tribology, galenic, they as Jo
have been the subject of active research since the 1980s both S'(n)
from a fundamental and applied point of view. At present, XIn| — —Hdn, (2
there are two well established self-consistent-fieRCPH So
theories to describe polymer layers. They both start from the
partition function of an ensemble of chains in contact withwherek=1 is a constantkgT is the thermal energy, and
the interface treated in mean field, but they soon proceed in & (n)=dSdn. The first term on the right hand sidghs) of
marked different way. Eventually, they become very differentEq. (2) accounts for loop interactior(gvhich depend on sol-
type of theories, depending on whether the chains are reversent conditions through the value of the exponghtsee
ibly adsorbed, and there is an adsorbed state which domifable ). The second term on the rhs of E®) is the usual
nates the solution of the associated Sdimger equation entropy associated with a set of polydisperse objects. Simi-
(ground-state dominand&SD) theories[1,2]), or they are  |arly, the extension of the layer is computed as
end tethered to a repulsive surfate-called “brushesy,
and the path integral is dominated by the classical solution N
(classical theorieg3-5]). L{S}Eaf [a2S(n)]edn, (3)
Because the two types of theories are very different in 0
spirit, there is a conceptual gap for intermediate cases. In . :
other words, there is no mean-field theory available to deyvhere the expoqerat IS given In Table I.' In the SF apprqach,
scribe both adsorption and grafting of polymers within theln€ 1ayer of chains is actually described as a polydisperse
same formalism. Such case arises, e.g., when chains apé)ly‘rlner brush(the“r(_)le of the chains being pIayec;l here by
grafted onto an attractive surface. In principle, at least, onéhe. pseudoloops,” i.e., half Ioopsplu; an gnprop!c tgrm
should be able to go in a continuous way from adsordedlik .hICh stems from the fact that the size distribution is not
to brushlike layers by tuning the amount of chains per uni ixed by any e.xterna.ll' operator, but the system of loops is in
surface. thermodyr_1am|c eqwhbnum.
A tentative to bridge such gap was proposed in a series of | We impose monodisperse pseudoloo8(u) = 5(u
papers where the so-called scaling functior(&#) approach N1 @ndSy=o, the grafting density, we immediately re-
is developed6,7]. This is an approach where the layer of COVer the .s.tandard results for polymer brushezs. I?Bgood sol-
monodisperse adsorbed chair$ fhonomers of size) is vent conditions, these Zareltll;]ﬁe extensionaN(a’c) ’ the
considered as a thermodynamic ensemble of interactin€€ energyj’-‘sszfl'Nglg )~ and the volume fraction of
loops and tails. These loops are polydisperse in size, and tHgonomers®=(a“s)“*. On the other hand, if we let the
main tool is the “loop size profile’S such that p_olyd|_sper5|ty free to minimize the thermodynamlcal poten-
tial (with Sy=a 2 to account for attractionwe recover the

N
S(n)ZSOJn P(u)du, (1) TABLE I. Values of the scaling exponents for the layer thick-
ness and the free energy.
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results found for reversibly adsorbed chains. In good solventhe results found with SF theory to SCF theories both at a
conditions, we find that the volume fraction of monomerformal level, and at the level of the results. In Sec. I, we

scales asb(z)=(a/z)*?, and the extension ds=aN?®>. address this question.
Such an idea proved to be successful in describing many
different kinds of polymer layerggrafted, reversibly ad- Il. STATUS

sorbed[6], irreversibly adsorbedl8]), whatever the solvent
quality (good solvent® solvent, and melt, i.e., no solvent
The approach was further expanded to the cases of convex We consider a set oNc monodisperse, linear, neutral
interfaceq 9]. chains in contact with a solid plartereaX). We assume that
The success of this phenomenological approach leads iae Iayer_|s unn‘prm in the dlr.e_ct|ons pgrallel to the sgrface.
to address the status of E@). The SF approach is so far an Our starting po_lnt is the partition functiog _of the chgu_ns,
elegant model but not a theory because Ex.is not de- each characterized by the pakin), wherez; is the position

duced from first principles, and the set of approximationsiorm"’?I to the surface and is the curvilinear index (%i

involved is not explicit. Recently, the SF approach was ap—\'\IC '

plied to the issue of surface tension of polymeric liquids Ne . " H

[10-12. Here again, the SF approach proved to be success- z= H f dzi(o)f dZ‘(N)f D{zi}ex;{ -

ful in reproducing the experimental features in great detail. i=1Jo 0 keT

However, because the results presented in R are dif- where the effective Hamiltonia#t is the sum of an elastic

ferent from the results of the self-consistent-field theory ong ntropid contribution

the same issue, it seems important to clarify the soundness i '

the SF approach. This question is addressed here in some 3 kT N fN(dZ‘)zd
== n

A. Variational free energy

)

dn ®)

detail. He=
The SF approach raises two questions essenti@)ys it
sound?(b) is it valid? The first question addresses the statu

of the SF approach, the second has to do with the validity o

2 32 <1 Jo

nd an excluded-volumigwo-body) interaction with param-

P L . terv,
the results that we will find by using it. Obviously, these two
issues are linked. Because “sound” is sometimes used for vkgT Ne NN
“crude” or “inaccurate,” it is useful to carefully explain Hex= > '21 J J d(z(n)—zi(n"))dndr’, (6)
what we mean by “sound” and “valid” before we start ar- =100
guing. whereé is the Dirac distribution. We limit ourselves to two-

As it stands, the SF approach is a phenomenological d&;ody interactions and thus neglect interactions of further or-
scription. This is useful in issues where we do not have anyer. This is not valid for @ solvent(wherev =0), but as
theory available. On the other hand, suppose we are in e shall see in Sec. Il B, the correct free energy for this type

position to compare a phenomenological approach to @f solvent is easily introduced afterwards. The volume frac-
theory on the same issue. The theory will always prevail. Ifiion at distance is written as

the two results are in agreement, this is fine, but then the
phenomenology is a trick to qualitatively understand the is- 1 Ne
sue, and essentially does not bring new features. If, on the $(2)= s > | s@z—z(n))dn. (7)
contrary, the two results are different, there is always the =t ) 0 ) S ]
suspicion that the phenomenological approach is a good idea Regardless of the particular microscopic _sm_Janon that is
extrapolated to an issue where this idea is too simple, antgalized, we can always decompose the chain into loops and
therefore, the result is wrong. We simply say “the approacﬁ[a"si and _rewnté—l accor_dlngly. Thl_s amounts to cutting the
is not sound.” Accuracy then is less relevant. mtegrqls into smal_ler pieces, by identifying the monomers

The debate is quite different when we have to compar@'ther in contact with the surface or at the top of the loops
two theories on the same issue. If somehow we were able @"d that we note; ,. Each piece corresponds to the com-
deduce the SF approach from first principles, and thereforgleété path of a loop or a tail. The “cutting” scheme is de-
prove that this is a theory, then the question of soundnesgcribed in Fig. 1. We implicitly assume that the loops are
would be resolved. Of course this would be done withinSymmetric, which comes from the translation invariance par-
approximations, and the theory may be crude or inaccurate @I!el to the solid surface. Hence ma_lthematically, these iden-
treat the issue, but it is sound. Then the debate over accuraéied monomers have a “null velocity"dz /dn|, =0 for
is essential to evaluate the results. eachi and @. The chaini is then cut intoN; pieces of size

We see that the status of the SF approach is the first quesy; ,=n; ,—n; ,—1, where I=a<N; with = ,m; ,=N. For
tion to be addressed, and depending on the answer, the diils, we consider the full path from the extreme monomer to
bate over validity will be different. In Sec. I, we deduce the the first monomer in direct contact with the surface, as ex-
effective free energy, Edq2), from first principles. In doing pected. The loops are cut into two pieces of equal length,
so, we demonstrate that the SF approach is indeed a variathich we shall call pseudoloops. Clearly, as far as math-
tional theory for polymer layers. Then we are led to ask theematics is concerned, tails and pseudoloops are similar ob-
second question: is it valid? Such task involves comparingects: these are chain segments starting at the surface and
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! T This is what ultimately controls the difference betwegn
and the approximatiotf,,,. Note that the choice of the en-
semble of functions over which we shall perform the mini-

m
ml
5 / mization is arbitrary. It is a guess, not an approximation
0/0 /A which could be somehow quantifiedpriori.

Our guess fofPy is

C

N N;
PT({(mi,a 1{Zi,a})a=l,Ni}i =1,NC): ]._.[ a:!;[l P(mi,a 1{Zi,a})v

-4 2] i=1
9
) —— where [{P(m; ,,{z ,})dm=1. Equation(9) is a mean-
0m m+m, +++ N 0 m, 0 m field-type approximation for the pseudoloops since their
probability distributions are decorrelatehypothesisA).
(a) (b) Furthermore, we assume thae path{z ,} is the same for

o . all the pseudoloopand is notedz} (hypothesisB). Because
FIG. 1. As far as the Hamiltonian is concerned, each chain 'nP(m- {z,.}) does not depend on the particular pseudoloop
. . . ha\5i,a
contact with the boundarya) with associated patlz(n) (1<n that is considered, we can drop the indices and write

<N) is formally equivalent to the set of pseudologjp$ obtained - T
by cutting the loops into two equal pieces with associated pathsp(m’{z})' Hence the probability distribution read®r

{z,(n),1<n<m,}. =P(m,{z})®, where BinNlei is the number of

pseudoloops at the interface. The crucial point is haho
ending somewhere in the solution with no velocity at thesemore depends on the complete set of sizes and path,
extreme monomer&f. Fig. 1). For that reason, we shall not {m; ,.{z ,}}, but only on(a) the size of the pseudoloop,
distinguish between tails and pseudoloops in the rest of thend on (b) the pathz chosen to be the same for all
paper, and refer to both of them as “pseudoloops.” As ispseudoloops. Importantly, the constrahtis automatically
obvious, such decompositiof@) is always possible(b) is  fulfiled with our approximation since two pseudoloops
unambiguous(c) lets the partition functionZ be identical  originating from the same loop have the same sizend
without any approximation, provided that we supplement thghus terminate at the same heiglitn). Then, the system is
cutting procedure by the constraifiater referred to ag)  described by two functions?(m), the probability that we
that the free extremities of the chagsegmentsriginating  have a pseudoloop of size, andz(n), the path of the chain
from the same loop should be at the same heighthen  segments. Hence, the trial free energy is obtained by mini-
(Mi o {Zi,o}) a=1n, designates the set of sizes and paths ofmizing F, 5, With respect to changes mandP (later, we will

pseudoloops for chain and we rewrite the Hamiltonian: ~ find it more convenient to work witly, rather tharP).
With Eg. (9), we find

_3keT § fma,a<d2a,a>2dn s
2 a2 =1a=1 Jo dn <Hex>PT:§¥kBTf dzd?(z), (10)
N N;
v:;-r i,jzcl a,ﬁzzl fomiyafomj’ﬂg(zi’“(n) where
A anan ® @)= eS| dmpm) |- zim)an
Computing exactly the partition function of the system (11

with the Hamiltonian, Eq(8), is clearly out of reach. Rather,

we implement the variational principle which necessitatestnd
two steps[13]. First, we need to choose a trial probability
such thatP; is a good approximation of the actual probabil-

ity, P=Z " lexg —H/kgT], but nevertheless allows for ana-
lytical calculations. Second, we approximate the exact free
energy F of the system by the extremum of the functional where B=3S, (hence S, is the “grafting density” of

Fuad Prt=(H)p, +keT(INPr)p . Of these two steps, the pseudoloops andz=dz/dn. Similarly, the entropic part of
second one is the simplest because it is purely a matter of,,, is found to be

calculation. Only the first one is significant as regards the
physics, since the success of the variational theory lies in
finding an appropriate trial function. The guéBsis a func-
tional form with free unspecified parameters. By minimizing
Fvai P1} with respect to these parameters, we will obtBin  Combining all these results and integrating by parts and us-
with the chosen functional form that best approximafes ing Eqg. (1), we find

3 kgT N m,
(Hebp, =5 %ESOL ameum) | "Zman, (12

kgT{In PT>7>T= kBTESOJONde(m)In P(m). (13
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Fo (IS} {7 N[ 3 2(n view to discuss the issue of accura€gy internal, (b) exter-
sz —zz(n)S(n)JrE . () nal, and(c) experimental.
kT 0 |2a? 2 7(n)
S'(n) A. Internal estimate of accuracy
—S’(n)ln( o S ”d (14 Internal means that we are able to estimate the error that

we have made in approximating the initial Hamiltonian, and
thus propose an internal criterion of validity, very much like
: . . the Lifshitz criterion of validity for mean-field theories. This
Note that_(b(z)=S(n(z))/z. Equat|on(_14) s the central re- equires that we define a relevant parameter which would
sult of this paper which we now discuss. To g.et the bes[1uantify the difference between the initial and the approxi-
approximation, we minimize Eq14) with respect t@ which  mated Hamiltonian, i.e., the two assumptions that we made.
yields z=(va?/6)*3s'3, and when this result is introduced  Concerning hypothesi, we know that the mean-field
back into Eq.(14), we find Eq.(2) with B=5/3 andk  approximation for the loops is not valid in good solvent con-
=(3.6"%/4) (v/a®)??. We thus find the mean-field version of ditions. This implies that the last term of Ed.4) is wrong.
our effective free energy, Eq2), with a numerical coeffi- However, the renormalization with semidilute blobs of the
cientk of order 1. first two terms takes into account the swelling of the
The formal derivation presented here brings an interestingseudoloops(hence correlations between monomemn
remark. In the early developments of the SF theory, the enscales smaller than the pseudoloop sizes. Thus for loops at
tropic part in Eq.(2) was introducedand interpretedas a least larger than one blob size, the excluded-volume interac-
contribution arising from combinatorial arrangements oftions are screened and these loops are decorrelated. Hence,
pseudoloops at the surface: the presence of the interfadhe entropic term of Eq14) is justified for a large number of
breaks down the symmetry of the solution and these monathe pseudoloops and even if it is not fully satisfying, this is
mers in contact with the surface becodistinguishableWe  the best way we can take into account these correlations
see that the entropic term in E@.4) is formally that contri-  unless we are led to use renormalization group theory, which
bution arising from the entropy of the trial probability. has been done for one chain but not for many chpl6s.
The hypothesisB is the crudest assumption in our theory.
We assume that all pseudoloops have the sareanpath
B. Generalization to other solvent conditions z(n). It is easy to show that for a melt, we find by minimi-

. . .. . H _nl2 H H FAtl .

The generalization to other solvent conditions, i.e., good?@tioNZe(n)=n"* which is the best variational approxima-
solvent,® solvent, and melt, has been done in Ré&7]  ton with our probability distribution, Eq(9). This result is
and deserves some comments. quite similar to the Flory theoreiR=aN"?for the extension

In the case of a melt, the excluded-volume interactions ar€f @ polymer chain in a melt. Of course this result is valid for
screened at all scales, and our mean-field approximation fda"g€ n, since for a random walk, fluctuations around this
pseudoloops is automatically verified. The probability distri-Value are proportional ta™~*. This result may not be valid
bution is then related to the Green function of a chain byfor small loops. However, with variational theories, the esti-
P(m)«G(0z(m);m), where z(m) is self-consistently ~Mate of this error is impossible.

determined via the constrair#(n)=Sy/NP(m)dm [ $(2)
=1 everywhere in an incompressible njelt

For a good solvent, the osmotj&q. (12)] and elastic External means that we compare the SF theory with an-
terms [Eq. (10)] are easily renormalized, following the other theory. For polymeric layers, the obvious candidate is
des Cloiseaux law[14], and using semidilute blobs SCF theoriesA priori, there are two ways to do thai) a
[15]. However, the approximation which consists informal comparison(b) a comparison of the results that we
neglecting correlations between pseudoloopa wiori not  obtain on a given issue. A formal comparison is simple when
verified. Thus, the transformation of<BT<In7>T)73T in the two theories have a common language. Unfortunately,
kTS Sof NdmP(m)In P(m) is not justified. However, corre- this is not the case for SCF theories and the SF theory. The
lations between monomers inside the same pseudoloop af@'mer is deduced from the initial Hamiltonian through a

B. External estimate of accuracy

taken into account through the blob renormalization. mean-field-type approximation for monomer-monomer cor-

Hence we have demonstrated that the SF approach is§lations, which is then applied to the problem of polymer at
variational theory, and Ed2) is sound. interfaces, whereas the latter proceeddirist rewriting the
Hamiltonian for chains at interfaces atifttnusing a mean-

1. VALIDITY field approximation for pseudoloops. Because of this differ-

ent order for these two steps, we do not know the way to
Of course, that the SF theory is sou(d the sense that it formally compare SCF and SF theories. Then we are left
is deduced from first principlesloes not guarantee at all that with comparing the results.
it is accurate, or even simply valid to describe polymeric There are two issues where such comparison is possible:
layers. This is because we have made approximations whosa) brushes in the infinite stretching limit, “mean-field” sol-
range of validity remains to be examined. vent conditions, andb) reversibly adsorbed layers, mean-
A priori, we could distinguish three different points of field solvent conditions. These issues are conceptually im-
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portant because we know exactly the solution of the SCF 2. Adsorbed layers

theory in the asymptotic limiN— . Presumably, the case of reversibly adsorbed polymers is
more significant for our purpose since our variational ap-
proach is based on a “loop description,” which is justified
As shown by Netz and Schickl7] and Li and Witten for the homogeneous adsorption.
[18], the theory of polymer brushes proposed simultaneously If we go to reversible adsorption, we have to turn our
by Milner, Witten, and Cate@MWC) and Skvortsowet al.in  attention to GSD theory. Although desirable, it is not so
Refs.[4,5], which consists in keeping the classic path in thesimple to compare the SF theory with GSD theories. There
partition function, can also be considered as a variationahre two reasons for thiga) the GSD theory uses the analogy
approach. However, the trial probability is different, and thebetween the partition functio& and the Green propagator in
layer is described by two functiong; such thaig(zg)dzyis  quantum mechanics, which does not allow a description in
the probability that the chain free extremity belongs to the“polymer trajectories”; (b) in this theory, the free energy is
interval [ z,zp+dZ], ande, such thate(z,zy)=|dz/dn| is  expressed in terms of the mean monomer concentration
the extension at positianfor a chain whose free extremity is ®(z), a quantity not simply related to our probability density
situated atzy. Paths(described bye) are chosen such that P(m). Indeed, the partition function of a chain having one
polymers are grafted at one eiith grafting densityo), end atz and the other freeZ(N,z), in the SCF theory, is the
i.e., [odzg/e(z,zg)=N (which leads to the so-called equal solution of the Schrdinger equation: 92/dN
time argument The variational free enerdyer cnf) is[17] = (a%6)9?2/9z>°— U Z, where the external potentibl is the
sum of the attractive potential due to the surfbkcg,;and the
= o 7 3 self-consistent potentid) . For the adsorbed chains, there
. ®(z)dz+ Ujo dz59(2o) Jl) EG(Z,Zo)dZ is a ground state of negative energy:NkgT which domi-
nates the solution, an@n the limiting case whereN>1)
the free energy approximates to

1. Brushes

Fmwe _UJ
keT 2

+o | “azinaz10z, 19
0

2

+U(2)d(2)|, (16

© do
with ®(2)=o[7dz[g(z0)/e(z,2,)]. Note that in the con- Fesp= kBTJ dz K((D)(E
text of brushes, the entropic contribution in E5), which 0
is similar to that in Eq(14), is the entropy of the chain-end
distribution[17,19,2Q. Simple arguments show that the first where x(®)=a2/(24®). As shown by Lifshitz and des
two terms on the rhs of E15) scale adN(a’s)*, whereas  Cloiseaux[22,23, the square gradient term in E¢L6) has
J9(20)In[9(z0)]dz~1. Hence, in the strong stretching limit, essentially an entropic origif24], whereas the polymeric
N(a?0)??>1, the entropic contribution tFywc is negli-  nature of the liquid can be neglected in the molecular field
gible [17]. However, this term is conceptually important and Usc2) (which is estimated for a monomeric liquidrhen
has a physical significance sinegzy,zo) is the tension sus- we are led to think that the elastic and entropic parts in Eq.
tained by the free chain ends. Hence, we see that @45.  (14) are related to the square gradient term, but we are not
and(15) are formally very close, but the choices for, respec-able to rewrite the former as the latter at the moment.
tively, z(n) ande(z,z,) are different. In the absence of any clue to formally compare Hag)

To compare the SF theory with the MWC theory, we con-and (16), we shall compare their results for infinite chains
centrate on monodisperse brushlesnce the entropic contri- and mean-field potential, a limit where the GSD theory hap-
bution in Eq.(14) disappearkin the strong stretching limit pens to be exact. If we minimize the free energy, Eof),
[hence, we neglect the entropic contribution in Ep)]. We  with the boundary condition§(0)=a 2, S(N—»)=0, we
find that in equilibrium 7,,c=0.892F*. We see that the find aZSeq(n)zk’3’2/(n+ kr)3/2 where k’=[3/(2k)]4’9,
extremum ofA}c is lower and according to the variational which yields ®(z)~z 2, essentially the solution found by
criterion, the MWC theory is a better approximation of the minimizing Eq.(16). Similarly, we find thatF* =kgT/a? as
exact free energy. See Refd8,21 for a thorough discus- with the GSD theory. Hence, we find a very good agreement
sion of this difference. It is related to the different choices forfor infinite chains.
the paths where the MWC choicee., the equal time argu- That the agreement should be betiarthe sense that both
men) is less restrictive. The reason is that in the SF theorythe scaling and the concentration profile are identidait
for brushes, we impose an additional constraint: all chairadsorption than for brushes reflects the validity of our initial
free extremities are situated in the outer edge of the layer, iassumption that all pseudoloops have the same path. As ex-
a fashion similar to the Flory approa¢br the Alexander—de plained in Ref[25], for very polydisperse layers, we expect
Gennes, which is similar in spirit but introduces the correcta stratification of the locations of the free chain ends above
scaling exponenjs Formally, this amounts to imposing a the surface. This is because the free ends of a long chain
o-type function forg, a restriction motivated by our desire to locate further away from the surface than that of a short
keep the SF theory tractable in a wider range of situationschain to take advantage of a lower osmotic presgtine
Eventually, we find the same results forand 7* at the  concentration decreases away from the intejfdeoethe con-
scaling level, although the description of the volume fractiontinuum limit, this argument suggests that every pseudoloop is
profile is more accurate in the MWC theory. similarly extended, and therefore validates our guess.
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C. Experimental estimate of accuracy possible, we finda) always the same scaling results, ahgl
_sometimes the same analytical result. Thus we conclude that

To evaluate the accuracy of a variational theory, the ulti , k
e SCF theory does not provide any argument against the SF

mate and major argument is to compare the value of the freg
energy at its minimum to experiments. The good candidate i§'€0"Y- o ,

thus the surface tension of polymeric liquidg, We have That the GSD approximation to the SCF theory is for-
shown in Refs[10-17 that the SF approach allows the cal- mally justified and quantifiable in mean-field solv_ent _condl-
culation of the variations ofy(N) in very good agreement tions does not guarantee_ Fhat the result that we find is accu-
with experimental data found in the literature. This is a gooorate for real solvent conditions and notably for the melt case.

test for the theory which has been done both for melts and* description only in terms of volume fractigsee Eq(16)]
semidilute solutiongin good solvent comes also from a variational argumd3] and has not

It is important to note that the SCF theory in the GSD been quantitatively justified in real systems. In other words,

approximation leads to a different result for the melt surfacdN€ GSD in the limitN— is the exact solution of the SCF
tension. The finite chain correction in that case is propor—thef)ry’ but still an approximate solution of the initial Hamil-
tional toN~1. We found a larger correction in M/N*2. An tonle;]n. sl 0o di o _
explanation of this discrepancy is that the SCF description T e crucia p(_)llnt redggr mgbpur alf)pr:ommau((j)ﬁlmttmg ith
relates the surface tension to the gradients in volume fractiolﬂc’pS Into tWO.ta' S and describing al the pseudoloops wit
which are localized in a very thin layer of thickneagin- the same pajhis whether the d|st|npt|on between Ipops and
deed this approach is not valid for large gradignfge argue tguls IS important enough_to modify the conclusions c.)f a
that this dependence comes from the chain reorganization gii"Ple theory in which it is neglected. When we are in a

a larger layer, whose thickness is the radius of gyration of osition to dlrectly_ evaluate_the_ consequences of these ap-
chain. In this layer, the volume fraction is constant. Thus jjoroximations, we find that this distinction does not affect the

aling results. It is interesting to note that the distinction
etween loops and tails has been done self-consistently for
i[;e SCF theory but is pwtd hocfor other types of solvents

cannot be described by the SCF approach whereas the
approach uses different tools, name(yn) and S(n), which
allows such a description. Hence, for adsorbed layers from
melt and a semidilute solution, we see that these two a|
proaches are quite different.

]. Therefore we conclude that there is no valid argument to
support that these approximations are not sound, provided
that we remain at a scaling level of description.

Finally, we assume in this approach that a large number of
loops are formed at the interface. This imposes both a sharp

This paper aims at clarifying the debate concerning thdnterface and the presence of many adsorbed chains. There-
soundness of the scaling functional approach. In view of thisfore, this theory does not apply to single-chain adsorption
the demonstration that the SF approach is a variationadnd to systems such as interfaces between incompatible
theory is certainly the essential and most significant result opolymers or diblock copolymers, for which other approaches
this paper(Sec. 1). But we think we have made clear a based on the SCF theory have been devel¢@éd7.
certain number of point§Sec. Ill). These are as follows. As a conclusion, the SF theory proposes a compromise

(1) The SF approach is a variational theory and thereforéetween a precise description of the polymeric layer and a
has the same epistemological status as SCF theories fafide ranging scaling-type theory valid for arbitrary polymer

IV. CONCLUDING REMARKS

brushes(“classical” solution) and adsorbed chain&SD). layers, various solvent conditions, and various geometries.
Of course, the approximations made are different and each &ince it does not require a comparable amount of mathemat-
these theories has a different range of validity. ics and has a wider range of applicability than both theories,

(2) Because the SF theory is a variational theory, we arét is very likely that the SF theory will become an important
not able to properly quantify the approximations that arepiece of our understanding of polymeric interfaces.
involved, and therefore we are unable to define the range of
validity of thi_s theory. ACKNOWLEDGMENTS

(3) There is no way that we know to formally compare the
two theories because the first step in approximating the ini- We are grateful to B. Fourcade for stimulating conversa-
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