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Validity of the scaling functional approach for polymer interfaces as a variational theory
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We discuss the soundness of the scaling functional~SF! approach proposed by Aubouy Guiselin and Raphae¨l
@Macromolecules29, 7261 ~1996!# to describe polymeric interfaces. In particular, we demonstrate that this
approach is a variational theory. We emphasize the role of SF theory as an important link between ground-state
theories suitable to describe adsorbed layers, and ‘‘classical’’ theories for polymer brushes.
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I. INTRODUCTION

Polymer interfaces are layers made of polymeric chain
direct contact with a boundary which may be a solid/liqu
liquid/liquid interface or a more complex surface such a
membrane. Because they have applications in such div
fields as colloid stabilization, coating, tribology, galenic, th
have been the subject of active research since the 1980s
from a fundamental and applied point of view. At prese
there are two well established self-consistent-field~SCF!
theories to describe polymer layers. They both start from
partition function of an ensemble of chains in contact w
the interface treated in mean field, but they soon proceed
marked different way. Eventually, they become very differe
type of theories, depending on whether the chains are rev
ibly adsorbed, and there is an adsorbed state which do
nates the solution of the associated Schro¨dinger equation
„ground-state dominance~GSD! theories@1,2#…, or they are
end tethered to a repulsive surface~so-called ‘‘brushes’’!,
and the path integral is dominated by the classical solu
~classical theories@3–5#!.

Because the two types of theories are very different
spirit, there is a conceptual gap for intermediate cases
other words, there is no mean-field theory available to
scribe both adsorption and grafting of polymers within t
same formalism. Such case arises, e.g., when chains
grafted onto an attractive surface. In principle, at least,
should be able to go in a continuous way from adsorded
to brushlike layers by tuning the amount of chains per u
surface.

A tentative to bridge such gap was proposed in a serie
papers where the so-called scaling functionnal~SF! approach
is developed@6,7#. This is an approach where the layer
monodisperse adsorbed chains (N monomers of sizea) is
considered as a thermodynamic ensemble of interac
loops and tails. These loops are polydisperse in size, and
main tool is the ‘‘loop size profile’’S such that

S~n!5S0E
n

N

P~u!du, ~1!
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whereP is the statistical distribution of loop sizes in mon
mer units, andS0 is the total number~per cm2) of loops. The
free energy~per cm2) of the layer of chains is written as

F $S%>
kBT

a2 E0

NH k@a2S~n!#b1@2a2S8~n!#

3 lnF2
S8~n!

S0
G J dn, ~2!

where k>1 is a constant,kBT is the thermal energy, and
S8(n)5dS/dn. The first term on the right hand side~rhs! of
Eq. ~2! accounts for loop interactions~which depend on sol-
vent conditions through the value of the exponentb, see
Table I!. The second term on the rhs of Eq.~2! is the usual
entropy associated with a set of polydisperse objects. S
larly, the extension of the layer is computed as

L$S%>aE
0

N

@a2S~n!#adn, ~3!

where the exponenta is given in Table I. In the SF approach
the layer of chains is actually described as a polydispe
polymer brush~the role of the chains being played here
the ‘‘pseudoloops,’’ i.e., half loops! plus an entropic term
which stems from the fact that the size distribution is n
fixed by any external operator, but the system of loops is
thermodynamic equilibrium.

If we impose monodisperse pseudoloops@P(u)5d(u
2N)# and S05s, the grafting density, we immediately re
cover the standard results for polymer brushes. In good
vent conditions, these are the extensionL>aN(a2s)1/3, the
free energyF>kBTN(a2s)11/6, and the volume fraction of
monomersF>(a2s)2/3. On the other hand, if we let the
polydispersity free to minimize the thermodynamical pote
tial ~with S05a22 to account for attraction!, we recover the

,
s:

TABLE I. Values of the scaling exponents for the layer thic
ness and the free energy.

Type of solvent Good Q Melt ‘‘Mean field’’

a 1/3 1/2 1 1/3
b 11/6 2 3 5/3
©2003 The American Physical Society02-1



e
e

an

t

nv

s
n

n
ap
ds
es
ai

o
ss
o

tu
o
o
f

-

d
an
in

. I
th
is
th

th
id
an
c

ar
le
fo
e
in

te
ra

ue

e

ar
th
in

t a
e

l
t
e.

-
or-

pe
c-

t is
and
e
rs
ps
-

e-
re
ar-
en-

to
ex-
th,
th-
ob-
and

M. MANGHI AND M. AUBOUY PHYSICAL REVIEW E 68, 041802 ~2003!
results found for reversibly adsorbed chains. In good solv
conditions, we find that the volume fraction of monom
scales asF(z)>(a/z)4/3, and the extension asL>aN3/5.

Such an idea proved to be successful in describing m
different kinds of polymer layers~grafted, reversibly ad-
sorbed@6#, irreversibly adsorbed@8#!, whatever the solven
quality ~good solvent,Q solvent, and melt, i.e., no solvent!.
The approach was further expanded to the cases of co
interfaces@9#.

The success of this phenomenological approach lead
to address the status of Eq.~2!. The SF approach is so far a
elegant model but not a theory because Eq.~2! is not de-
duced from first principles, and the set of approximatio
involved is not explicit. Recently, the SF approach was
plied to the issue of surface tension of polymeric liqui
@10–12#. Here again, the SF approach proved to be succ
ful in reproducing the experimental features in great det
However, because the results presented in Ref.@10# are dif-
ferent from the results of the self-consistent-field theory
the same issue, it seems important to clarify the soundne
the SF approach. This question is addressed here in s
detail.

The SF approach raises two questions essentially:~a! is it
sound?~b! is it valid? The first question addresses the sta
of the SF approach, the second has to do with the validity
the results that we will find by using it. Obviously, these tw
issues are linked. Because ‘‘sound’’ is sometimes used
‘‘crude’’ or ‘‘inaccurate,’’ it is useful to carefully explain
what we mean by ‘‘sound’’ and ‘‘valid’’ before we start ar
guing.

As it stands, the SF approach is a phenomenological
scription. This is useful in issues where we do not have
theory available. On the other hand, suppose we are
position to compare a phenomenological approach to
theory on the same issue. The theory will always prevail
the two results are in agreement, this is fine, but then
phenomenology is a trick to qualitatively understand the
sue, and essentially does not bring new features. If, on
contrary, the two results are different, there is always
suspicion that the phenomenological approach is a good
extrapolated to an issue where this idea is too simple,
therefore, the result is wrong. We simply say ‘‘the approa
is not sound.’’ Accuracy then is less relevant.

The debate is quite different when we have to comp
two theories on the same issue. If somehow we were ab
deduce the SF approach from first principles, and there
prove that this is a theory, then the question of soundn
would be resolved. Of course this would be done with
approximations, and the theory may be crude or inaccura
treat the issue, but it is sound. Then the debate over accu
is essential to evaluate the results.

We see that the status of the SF approach is the first q
tion to be addressed, and depending on the answer, the
bate over validity will be different. In Sec. II, we deduce th
effective free energy, Eq.~2!, from first principles. In doing
so, we demonstrate that the SF approach is indeed a v
tional theory for polymer layers. Then we are led to ask
second question: is it valid? Such task involves compar
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the results found with SF theory to SCF theories both a
formal level, and at the level of the results. In Sec. III, w
address this question.

II. STATUS

A. Variational free energy

We consider a set ofNC monodisperse, linear, neutra
chains in contact with a solid plane~areaS). We assume tha
the layer is uniform in the directions parallel to the surfac
Our starting point is the partition functionZ of the chains,
each characterized by the pathzi(n), wherezi is the position
normal to the surface andn is the curvilinear index (1< i
<NC):

Z5)
i 51

NC E
0

`

dzi~0!E
0

`

dzi~N!E D$zi%expF2
H

kBTG , ~4!

where the effective HamiltonianH is the sum of an elastic
~entropic! contribution,

Hel5
3

2

kBT

a2 (
i 51

NC E
0

NS dzi

dnD 2

dn ~5!

and an excluded-volume~two-body! interaction with param-
eterv,

Hex5
vkBT

2S (
i , j 51

NC E
0

NE
0

N

d„zi~n!2zj~n8!…dndn8, ~6!

whered is the Dirac distribution. We limit ourselves to two
body interactions and thus neglect interactions of further
der. This is not valid for aQ solvent~wherev50), but as
we shall see in Sec. II B, the correct free energy for this ty
of solvent is easily introduced afterwards. The volume fra
tion at distancez is written as

f~z!5
1

S (
i 51

NC E
0

N

d„z2zi~n!…dn. ~7!

Regardless of the particular microscopic situation tha
realized, we can always decompose the chain into loops
tails, and rewriteH accordingly. This amounts to cutting th
integrals into smaller pieces, by identifying the monome
either in contact with the surface or at the top of the loo
and that we noteni ,a . Each piece corresponds to the com
plete path of a loop or a tail. The ‘‘cutting’’ scheme is d
scribed in Fig. 1. We implicitly assume that the loops a
symmetric, which comes from the translation invariance p
allel to the solid surface. Hence mathematically, these id
tified monomers have a ‘‘null velocity’’:dzi /dnuni ,a

50 for

eachi anda. The chaini is then cut intoNi pieces of size
mi ,a5ni ,a2ni ,a21, where 1<a<Ni with (ami ,a5N. For
tails, we consider the full path from the extreme monomer
the first monomer in direct contact with the surface, as
pected. The loops are cut into two pieces of equal leng
which we shall call pseudoloops. Clearly, as far as ma
ematics is concerned, tails and pseudoloops are similar
jects: these are chain segments starting at the surface
2-2
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VALIDITY OF THE SCALING FUNCTIONAL APPROACH . . . PHYSICAL REVIEW E68, 041802 ~2003!
ending somewhere in the solution with no velocity at the
extreme monomers~cf. Fig. 1!. For that reason, we shall no
distinguish between tails and pseudoloops in the rest of
paper, and refer to both of them as ‘‘pseudoloops.’’ As
obvious, such decomposition~a! is always possible,~b! is
unambiguous,~c! lets the partition functionZ be identical
without any approximation, provided that we supplement
cutting procedure by the constraint~later referred to asC)
that the free extremities of the chainsegmentsoriginating
from the same loop should be at the same heightz. Then
(mi ,a ,$zi ,a%)a51,Ni

designates the set of sizes and paths
pseudoloops for chaini, and we rewrite the Hamiltonian:

H5
3

2

kBT

a2 (
i 51

NC

(
a51

Ni E
0

mi ,aS dzi ,a

dn D 2

dn

1
vkBT

2S (
i , j 51

NC

(
a,b51

Ni E
0

mi ,aE
0

mj ,b
d„zi ,a~n!

2zj ,b~n8!…dn dn8. ~8!

Computing exactly the partition function of the syste
with the Hamiltonian, Eq.~8!, is clearly out of reach. Rathe
we implement the variational principle which necessita
two steps@13#. First, we need to choose a trial probabili
such thatPT is a good approximation of the actual probab
ity, P5Z 21exp@2H/kBT#, but nevertheless allows for ana
lytical calculations. Second, we approximate the exact f
energyF of the system by the extremum of the function
Fvar$PT%5^H&PT

1kBT^ ln PT&PT
. Of these two steps, th

second one is the simplest because it is purely a matte
calculation. Only the first one is significant as regards
physics, since the success of the variational theory lies
finding an appropriate trial function. The guessPT is a func-
tional form with free unspecified parameters. By minimizi
Fvar$PT% with respect to these parameters, we will obtainPT
with the chosen functional form that best approximatesP.

FIG. 1. As far as the Hamiltonian is concerned, each chain
contact with the boundary~a! with associated pathz(n) (1,n
,N) is formally equivalent to the set of pseudoloops~b! obtained
by cutting the loops into two equal pieces with associated pa
$za(n),1,n,ma%.
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This is what ultimately controls the difference betweenF
and the approximationFvar. Note that the choice of the en
semble of functions over which we shall perform the min
mization is arbitrary. It is a guess, not an approximati
which could be somehow quantifieda priori.

Our guess forPT is

PT„$~mi ,a ,$zi ,a%!a51,Ni
% i 51,NC

…5)
i 51

NC

)
a51

Ni

P~mi ,a ,$zi ,a%!,

~9!

where *0
NP(mi ,a ,$zi ,a%)dm51. Equation ~9! is a mean-

field-type approximation for the pseudoloops since th
probability distributions are decorrelated~hypothesisA).
Furthermore, we assume thatthe path$zi ,a% is the same for
all the pseudoloopsand is noted$z% ~hypothesisB). Because
P(mi ,a ,$zi ,a%) does not depend on the particular pseudolo
that is considered, we can drop the indices and w
P(m,$z%). Hence the probability distribution readsPT

5P(m,$z%)B, where B5( i 51
NC Ni is the number of

pseudoloops at the interface. The crucial point is thatPT no
more depends on the complete set of sizes and p
$mi ,a ,$zi ,a%%, but only on~a! the size of the pseudoloop,m,
and on ~b! the path z, chosen to be the same for a
pseudoloops. Importantly, the constraintC is automatically
fulfilled with our approximation since two pseudoloop
originating from the same loop have the same sizem and
thus terminate at the same heightz(m). Then, the system is
described by two functions:P(m), the probability that we
have a pseudoloop of sizem, andz(n), the path of the chain
segments. Hence, the trial free energy is obtained by m
mizing Fvar with respect to changes inz andP ~later, we will
find it more convenient to work withS, rather thanP).

With Eq. ~9!, we find

^Hex&PT
5

1

2

vS

a6
kBTE dzF2~z!, ~10!

where

F~z![^f~z!&PT
5a3S0E

0

N

dmP~m!E
0

m

d„z2z~n!…dn

~11!

and

^Hel&PT
5

3

2

kBT

a2
SS0E

0

N

dmP~m!E
0

m

ż2~n!dn, ~12!

where B5SS0 ~hence S0 is the ‘‘grafting density’’ of
pseudoloops!, and ż5dz/dn. Similarly, the entropic part of
Fvar is found to be

kBT^ ln PT&PT
5kBTSS0E

0

N

dmP~m!ln P~m!. ~13!

Combining all these results and integrating by parts and
ing Eq. ~1!, we find

n

s

2-3
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Fvar~$S%,$ż%!

kBTS
5E

0

NH 3

2a2
ż2~n!S~n!1

v
2

S2~n!

ż~n!

2S8~n!lnS 2
S8~n!

S0
D J dn. ~14!

Note thatF(z)5S„n(z)…/ ż. Equation~14! is the central re-
sult of this paper which we now discuss. To get the b
approximation, we minimize Eq.~14! with respect toż which
yields ż5(va2/6)1/3S1/3, and when this result is introduce
back into Eq. ~14!, we find Eq. ~2! with b55/3 and k
5(3.61/3/4)(v/a3)2/3. We thus find the mean-field version o
our effective free energy, Eq.~2!, with a numerical coeffi-
cient k of order 1.

The formal derivation presented here brings an interes
remark. In the early developments of the SF theory, the
tropic part in Eq.~2! was introduced~and interpreted! as a
contribution arising from combinatorial arrangements
pseudoloops at the surface: the presence of the inter
breaks down the symmetry of the solution and these mo
mers in contact with the surface becomedistinguishable. We
see that the entropic term in Eq.~14! is formally that contri-
bution arising from the entropy of the trial probability.

B. Generalization to other solvent conditions

The generalization to other solvent conditions, i.e., go
solvent,Q solvent, and melt, has been done in Refs.@6,7#
and deserves some comments.

In the case of a melt, the excluded-volume interactions
screened at all scales, and our mean-field approximation
pseudoloops is automatically verified. The probability dis
bution is then related to the Green function of a chain
P(m)}G„0,z(m);m…, where z(m) is self-consistently
determined via the constraintż(n)5S0*n

NP(m)dm @f(z)
51 everywhere in an incompressible melt#.

For a good solvent, the osmotic@Eq. ~12!# and elastic
terms @Eq. ~10!# are easily renormalized, following th
des Cloiseaux law @14#, and using semidilute blob
@15#. However, the approximation which consists
neglecting correlations between pseudoloops isa priori not
verified. Thus, the transformation ofkBT^ lnPT&PT

in

kBTSS0*0
NdmP(m)ln P(m) is not justified. However, corre

lations between monomers inside the same pseudoloop
taken into account through the blob renormalization.

Hence we have demonstrated that the SF approach
variational theory, and Eq.~2! is sound.

III. VALIDITY

Of course, that the SF theory is sound~in the sense that i
is deduced from first principles! does not guarantee at all th
it is accurate, or even simply valid to describe polyme
layers. This is because we have made approximations w
range of validity remains to be examined.

A priori, we could distinguish three different points o
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view to discuss the issue of accuracy:~a! internal,~b! exter-
nal, and~c! experimental.

A. Internal estimate of accuracy

Internal means that we are able to estimate the error
we have made in approximating the initial Hamiltonian, a
thus propose an internal criterion of validity, very much lik
the Lifshitz criterion of validity for mean-field theories. Thi
requires that we define a relevant parameter which wo
quantify the difference between the initial and the appro
mated Hamiltonian, i.e., the two assumptions that we ma

Concerning hypothesisA, we know that the mean-field
approximation for the loops is not valid in good solvent co
ditions. This implies that the last term of Eq.~14! is wrong.
However, the renormalization with semidilute blobs of t
first two terms takes into account the swelling of t
pseudoloops~hence correlations between monomers! on
scales smaller than the pseudoloop sizes. Thus for loop
least larger than one blob size, the excluded-volume inte
tions are screened and these loops are decorrelated. H
the entropic term of Eq.~14! is justified for a large number o
the pseudoloops and even if it is not fully satisfying, this
the best way we can take into account these correlat
unless we are led to use renormalization group theory, wh
has been done for one chain but not for many chains@16#.

The hypothesisB is the crudest assumption in our theor
We assume that all pseudoloops have the samemeanpath
z(n). It is easy to show that for a melt, we find by minim
zationzeq(n).n1/2, which is the best variational approxima
tion with our probability distribution, Eq.~9!. This result is
quite similar to the Flory theoremR.aN1/2 for the extension
of a polymer chain in a melt. Of course this result is valid f
large n, since for a random walk, fluctuations around th
value are proportional ton21/2. This result may not be valid
for small loops. However, with variational theories, the es
mate of this error is impossible.

B. External estimate of accuracy

External means that we compare the SF theory with
other theory. For polymeric layers, the obvious candidate
SCF theories.A priori, there are two ways to do that:~a! a
formal comparison,~b! a comparison of the results that w
obtain on a given issue. A formal comparison is simple wh
the two theories have a common language. Unfortunat
this is not the case for SCF theories and the SF theory.
former is deduced from the initial Hamiltonian through
mean-field-type approximation for monomer-monomer c
relations, which is then applied to the problem of polymer
interfaces, whereas the latter proceeds infirst rewriting the
Hamiltonian for chains at interfaces andthenusing a mean-
field approximation for pseudoloops. Because of this diff
ent order for these two steps, we do not know the way
formally compare SCF and SF theories. Then we are
with comparing the results.

There are two issues where such comparison is poss
~a! brushes in the infinite stretching limit, ‘‘mean-field’’ sol
vent conditions, and~b! reversibly adsorbed layers, mea
field solvent conditions. These issues are conceptually
2-4
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portant because we know exactly the solution of the S
theory in the asymptotic limitN→`.

1. Brushes

As shown by Netz and Schick@17# and Li and Witten
@18#, the theory of polymer brushes proposed simultaneou
by Milner, Witten, and Cates~MWC! and Skvortsovet al. in
Refs.@4,5#, which consists in keeping the classic path in t
partition function, can also be considered as a variatio
approach. However, the trial probability is different, and t
layer is described by two functions:g, such thatg(z0)dz0 is
the probability that the chain free extremity belongs to
interval @z0 ,z01dz0#, ande, such thate(z,z0)5udz/dnu is
the extension at positionz for a chain whose free extremity i
situated atz0. Paths~described bye) are chosen such tha
polymers are grafted at one end~with grafting densitys),
i.e., *0

`dz0 /e(z,z0)5N ~which leads to the so-called equ
time argument!. The variational free energy~per cm2) is @17#

FMWC

kBT
5

v
2E0

`

F2~z!dz1sE
0

`

dz0g~z0!E
0

z0 3

2a2
e~z,z0!dz

1sE
0

`

g~z0!ln@g~z0!#dz0 , ~15!

with F(z)5s*z
`dz0@g(z0)/e(z,z0)#. Note that in the con-

text of brushes, the entropic contribution in Eq.~15!, which
is similar to that in Eq.~14!, is the entropy of the chain-en
distribution@17,19,20#. Simple arguments show that the fir
two terms on the rhs of Eq.~15! scale asN(a2s)5/3, whereas
*g(z0)ln@g(z0)#dz0;1. Hence, in the strong stretching limi
N(a2s)2/3@1, the entropic contribution toFMWC is negli-
gible @17#. However, this term is conceptually important a
has a physical significance sincee(z0 ,z0) is the tension sus
tained by the free chain ends. Hence, we see that Eqs.~14!
and~15! are formally very close, but the choices for, respe
tively, z(n) ande(z,z0) are different.

To compare the SF theory with the MWC theory, we co
centrate on monodisperse brushes@hence the entropic contri
bution in Eq.~14! disappears# in the strong stretching limit
@hence, we neglect the entropic contribution in Eq.~15!#. We
find that in equilibriumFMWC* 50.892F* . We see that the
extremum ofFMWC* is lower and according to the variation
criterion, the MWC theory is a better approximation of t
exact free energy. See Refs.@18,21# for a thorough discus-
sion of this difference. It is related to the different choices
the paths where the MWC choice~i.e., the equal time argu
ment! is less restrictive. The reason is that in the SF the
for brushes, we impose an additional constraint: all ch
free extremities are situated in the outer edge of the laye
a fashion similar to the Flory approach~or the Alexander–de
Gennes, which is similar in spirit but introduces the corr
scaling exponents!. Formally, this amounts to imposing
d-type function forg, a restriction motivated by our desire t
keep the SF theory tractable in a wider range of situatio
Eventually, we find the same results forL and F* at the
scaling level, although the description of the volume fract
profile is more accurate in the MWC theory.
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2. Adsorbed layers

Presumably, the case of reversibly adsorbed polymer
more significant for our purpose since our variational a
proach is based on a ‘‘loop description,’’ which is justifie
for the homogeneous adsorption.

If we go to reversible adsorption, we have to turn o
attention to GSD theory. Although desirable, it is not
simple to compare the SF theory with GSD theories. Th
are two reasons for this:~a! the GSD theory uses the analog
between the partition functionZ and the Green propagator i
quantum mechanics, which does not allow a description
‘‘polymer trajectories’’; ~b! in this theory, the free energy i
expressed in terms of the mean monomer concentra
F(z), a quantity not simply related to our probability densi
P(m). Indeed, the partition function of a chain having o
end atz and the other free,Z(N,z), in the SCF theory, is the
solution of the Schro¨dinger equation: ]Z/]N
5(a2/6)]2Z/]z22UZ, where the external potentialU is the
sum of the attractive potential due to the surfaceUsurf and the
self-consistent potentialUSCF. For the adsorbed chains, the
is a ground state of negative energy2«NkBT which domi-
nates the solution, and~in the limiting case where«N@1)
the free energy approximates to

FGSD5kBTE
0

`

dzFk~F!S dF

dz D 2

1U~z!F~z!G , ~16!

where k(F)5a2/(24F). As shown by Lifshitz and des
Cloiseaux@22,23#, the square gradient term in Eq.~16! has
essentially an entropic origin@24#, whereas the polymeric
nature of the liquid can be neglected in the molecular fi
USCF(z) ~which is estimated for a monomeric liquid!. Then
we are led to think that the elastic and entropic parts in
~14! are related to the square gradient term, but we are
able to rewrite the former as the latter at the moment.

In the absence of any clue to formally compare Eqs.~14!
and ~16!, we shall compare their results for infinite chain
and mean-field potential, a limit where the GSD theory ha
pens to be exact. If we minimize the free energy, Eq.~14!,
with the boundary conditionsS(0)5a22, S(N→`)50, we
find a2Seq(n)5k83/2/(n1k8)3/2 where k85@3/(2k)#4/9,
which yieldsF(z);z22, essentially the solution found b
minimizing Eq.~16!. Similarly, we find thatF* >kBT/a2 as
with the GSD theory. Hence, we find a very good agreem
for infinite chains.

That the agreement should be better~in the sense that both
the scaling and the concentration profile are identical! for
adsorption than for brushes reflects the validity of our init
assumption that all pseudoloops have the same path. As
plained in Ref.@25#, for very polydisperse layers, we expe
a stratification of the locations of the free chain ends ab
the surface. This is because the free ends of a long c
locate further away from the surface than that of a sh
chain to take advantage of a lower osmotic pressure~the
concentration decreases away from the interface!. In the con-
tinuum limit, this argument suggests that every pseudoloo
similarly extended, and therefore validates our guess.
2-5
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C. Experimental estimate of accuracy

To evaluate the accuracy of a variational theory, the u
mate and major argument is to compare the value of the
energy at its minimum to experiments. The good candidat
thus the surface tension of polymeric liquids,g. We have
shown in Refs.@10–12# that the SF approach allows the ca
culation of the variations ofg(N) in very good agreemen
with experimental data found in the literature. This is a go
test for the theory which has been done both for melts
semidilute solutions~in good solvent!.

It is important to note that the SCF theory in the GS
approximation leads to a different result for the melt surfa
tension. The finite chain correction in that case is prop
tional to N21. We found a larger correction in lnN/N1/2. An
explanation of this discrepancy is that the SCF descrip
relates the surface tension to the gradients in volume frac
which are localized in a very thin layer of thicknessa ~in-
deed this approach is not valid for large gradients!. We argue
that this dependence comes from the chain reorganizatio
a larger layer, whose thickness is the radius of gyration o
chain. In this layer, the volume fraction is constant. Thus
cannot be described by the SCF approach whereas th
approach uses different tools, namelyz(n) andS(n), which
allows such a description. Hence, for adsorbed layers fro
melt and a semidilute solution, we see that these two
proaches are quite different.

IV. CONCLUDING REMARKS

This paper aims at clarifying the debate concerning
soundness of the scaling functional approach. In view of t
the demonstration that the SF approach is a variatio
theory is certainly the essential and most significant resu
this paper~Sec. II!. But we think we have made clear
certain number of points~Sec. III!. These are as follows.

~1! The SF approach is a variational theory and theref
has the same epistemological status as SCF theories
brushes~‘‘classical’’ solution! and adsorbed chains~GSD!.
Of course, the approximations made are different and eac
these theories has a different range of validity.

~2! Because the SF theory is a variational theory, we
not able to properly quantify the approximations that a
involved, and therefore we are unable to define the rang
validity of this theory.

~3! There is no way that we know to formally compare t
two theories because the first step in approximating the
tial Hamiltonian is different.

~4! Each time a direct comparison with SCF theory
os

n

04180
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e

is

d
d

e
r-

n
n

on
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it
SF

a
p-

e
s,
al
f

e
for
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e
e
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possible, we find~a! always the same scaling results, and~b!
sometimes the same analytical result. Thus we conclude
the SCF theory does not provide any argument against the
theory.

That the GSD approximation to the SCF theory is fo
mally justified and quantifiable in mean-field solvent con
tions does not guarantee that the result that we find is a
rate for real solvent conditions and notably for the melt ca
A description only in terms of volume fraction@see Eq.~16!#
comes also from a variational argument@23# and has not
been quantitatively justified in real systems. In other wor
the GSD in the limitN→` is the exact solution of the SCF
theory, but still an approximate solution of the initial Ham
tonian.

The crucial point regarding our approximations~cutting
loops into two tails and describing all the pseudoloops w
the same path! is whether the distinction between loops a
tails is important enough to modify the conclusions of
simple theory in which it is neglected. When we are in
position to directly evaluate the consequences of these
proximations, we find that this distinction does not affect t
scaling results. It is interesting to note that the distincti
between loops and tails has been done self-consistently
the SCF theory but is putad hocfor other types of solvents
@2#. Therefore we conclude that there is no valid argumen
support that these approximations are not sound, provi
that we remain at a scaling level of description.

Finally, we assume in this approach that a large numbe
loops are formed at the interface. This imposes both a sh
interface and the presence of many adsorbed chains. Th
fore, this theory does not apply to single-chain adsorpt
and to systems such as interfaces between incompa
polymers or diblock copolymers, for which other approach
based on the SCF theory have been developed@26,27#.

As a conclusion, the SF theory proposes a comprom
between a precise description of the polymeric layer an
wide ranging scaling-type theory valid for arbitrary polym
layers, various solvent conditions, and various geometr
Since it does not require a comparable amount of mathem
ics and has a wider range of applicability than both theor
it is very likely that the SF theory will become an importa
piece of our understanding of polymeric interfaces.
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